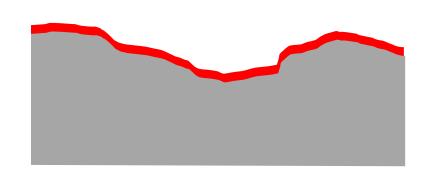


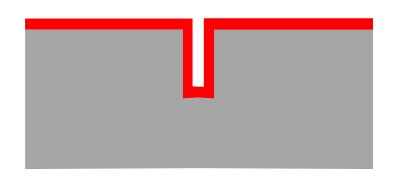
Chemical Vapour Deposition or CVD

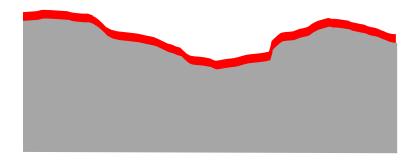
- Chemical reaction is involved
- Example for deposition of W at high temperature (600 °C)

$$F = W + 3H_2 \rightarrow W + 6 HF$$


Chemical Vapour Deposition or CVD

- Chemical reaction is involved
- Example for deposition of W at high temperature


Chemical Vapour Deposition or CVD


- Chemical reaction is involved
- Example for deposition of W at high temperature

 Use of gaseous phase results in conformal deposition on substrate with arbitrary texture

Chemical Vapour Deposition or CVD

- Chemical reaction is involved
- Example for deposition of W at high temperature

 Use of gaseous phase results in conformal deposition on substrate with arbitrary texture

A Method for Wafer-Scale Encapsulation of Large Lateral Deflection MEMS Devices

Andrew B. Graham, Matthew W. Messana, *Member, IEEE, Member, ASME*, Peter G. Hartwell, J. Provine, Shingo Yoneoka, Renata Melamud, Bongsang Kim, *Member, IEEE*, Roger T. Howe, *Fellow, IEEE*, and Thomas W. Kenny

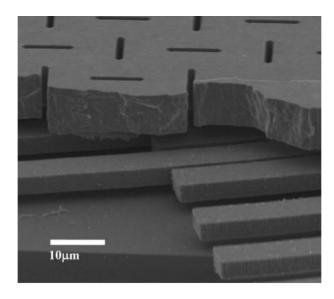


Fig. 11. SEM cross section showing released but unsealed interdigitated comb-drive fingers.

A Method for Wafer-Scale Encapsulation of Large Lateral Deflection MEMS Devices

Andrew B. Graham, Matthew W. Messana, *Member, IEEE, Member, ASME*, Peter G. Hartwell, J. Provine, Shingo Yoneoka, Renata Melamud, Bongsang Kim, *Member, IEEE*, Roger T. Howe, *Fellow, IEEE*, and Thomas W. Kenny

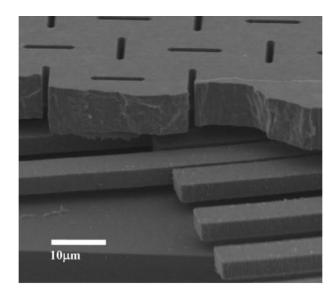


Fig. 11. SEM cross section showing released but unsealed interdigitated comb-drive fingers.

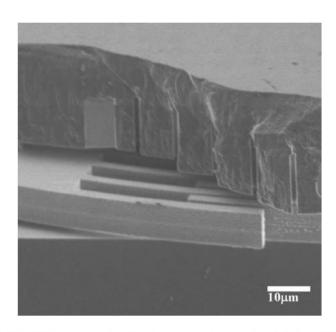
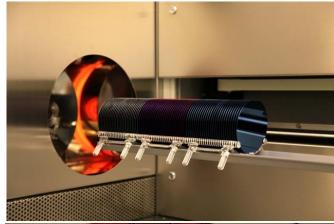


Fig. 12. SEM cross section showing encapsulated and sealed interdigitated comb-drive fingers.

Deposition of SiO₂ by CVD

CVD equipment



Example of a thermal CVD reactor

CVD equipment

- A batch of Si wafers is positioned in a fused silica holder
- After closing of entrance port, the carrier gas enters the deposition chamber under very controlled flow and temperature conditions
- The CVD thin film is grown on all exposed surfaces of the wafers

Mass transfer from gas phase to substrate

• At equilibrium, the concentration at the surface (y=0) is maintained at a uniform value $\rho_{surf} < \rho_{y=\infty}$ and the gas transfer rate per unit surface can be written in three dimensions as

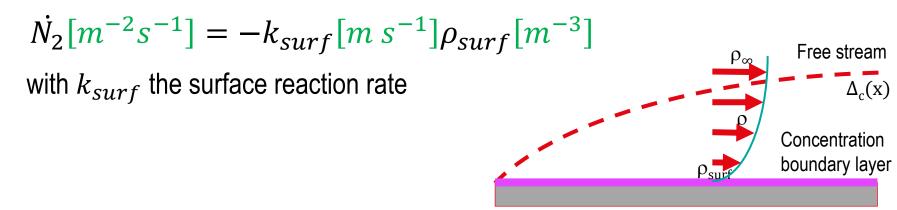
$$\dot{N}[m^{-2}s^{-1}] = h[m\ s^{-1}]\left(\rho_{surf} - \rho_{y=\infty}\right)[m^{-3}]$$
 with h the mass transfer coefficient

Mass transfer from gas phase to substrate

• At equilibrium, the concentration at the surface (y=0) is maintained at a uniform value $\rho_{surf} < \rho_{y=\infty}$ and the gas transfer rate per unit surface can be written in three dimensions as

$$\dot{N}[m^{-2}s^{-1}] = h[m\ s^{-1}]\left(\rho_{surf} - \rho_{y=\infty}\right)[m^{-3}]$$
 with h the mass transfer coefficient

 If mass flux associated with species transfer is by diffusion, Fick's law applies at the surface


$$\dot{N} = -D \frac{\partial \rho}{\partial y} \bigg|_{y=0} \qquad h = \frac{-D \frac{\partial \rho}{\partial y} \bigg|_{y=0}}{(\rho_{surf} - \rho_{y=\infty})}$$

Calculation of the film growth rate

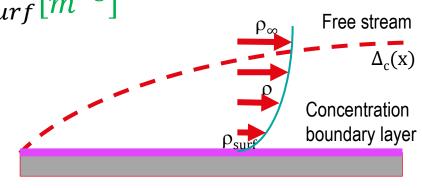
Diffusion flux of molecules through the boundary layer

$$\dot{N}_1[m^{-2}s^{-1}] = h[m \ s^{-1}] \left(\rho_{surf} - \rho_{y=\infty}\right)[m^{-3}]$$

Flux of reacted molecules consumed by the surface reaction

Calculation of the film growth rate

Diffusion flux of molecules through the boundary layer


$$\dot{N}_1[m^{-2}s^{-1}] = h[m \ s^{-1}] \left(\rho_{surf} - \rho_{y=\infty}\right)[m^{-3}]$$

Flux of reacted molecules consumed by the surface reaction

$$\dot{N_2}[m^{-2}s^{-1}] = -k_{surf}[m\ s^{-1}]\rho_{surf}[m^{-3}]$$
 with k_{surf} the surface reaction rate

ullet In equilibrium, $\dot{N}\equiv \dot{N_1}=\dot{N_2}$, giving

$$\rho_{surf} = \rho_{y=\infty} \left(\frac{h + k_{surf}}{h} \right)^{-1}$$

• The film growth rate is then proportional to

$$\dot{N} = \frac{k_{surf}h}{h + k_{surf}} \, \rho_{y = \infty}$$

The film growth rate is then proportional to

$$\dot{N} = \frac{k_{surf}h}{h + k_{surf}} \rho_{y = \infty}$$

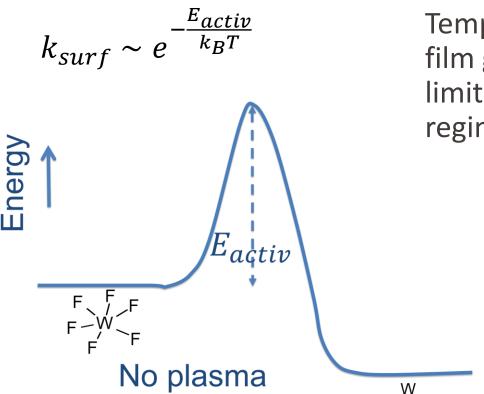
• If $h \gg k_{surf}$, we have the surface reaction-controlled case and

$$\dot{N} = k_{surf} \, \rho_{y=\infty}$$

1

The film growth rate is then proportional to

$$\dot{N} = \frac{k_{surf}h}{h + k_{surf}} \rho_{y = \infty}$$

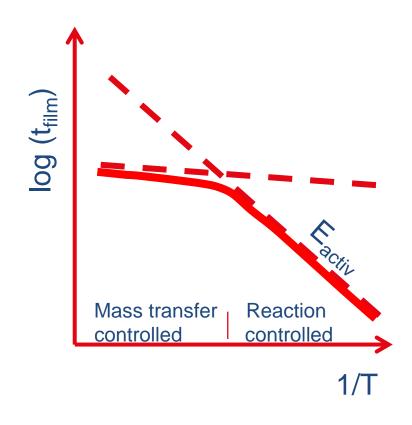

• If $h \gg k_{surf}$, we have the surface reaction-controlled case and

$$\dot{N} = k_{surf} \, \rho_{y=\infty}$$

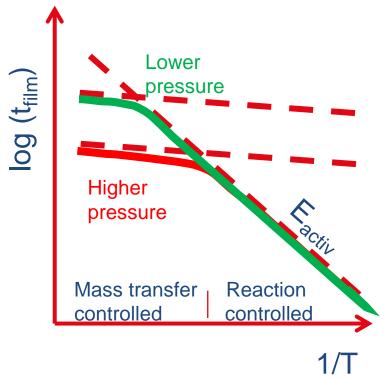
• If $h \ll k_{surf}$, we have the diffusion-controlled case and

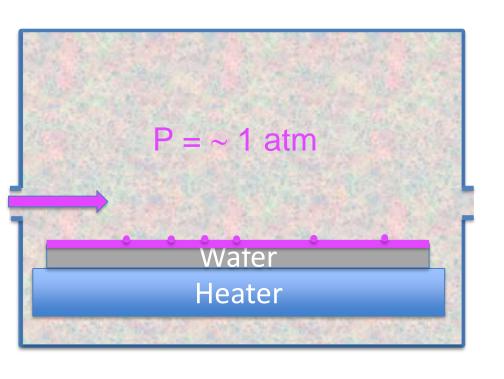
$$\dot{N} = h \, \rho_{y=\infty}$$

Temperature decides whether film growth is in the reaction-limited or gas diffusion-limited regime

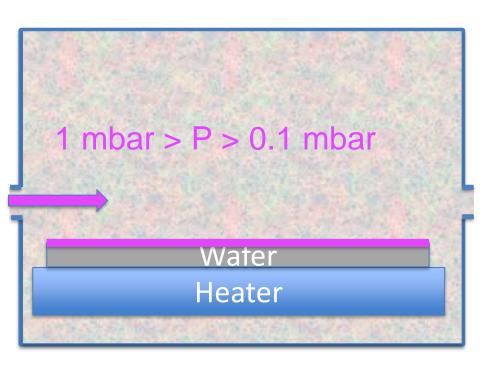

.

$$t_{film}(x) = C_{gas}(x) \times P_{growth} \times e^{-\frac{E_{activ}}{k_B T}}$$
$$k_{surf} \sim e^{-\frac{E_{activ}}{k_B T}}$$

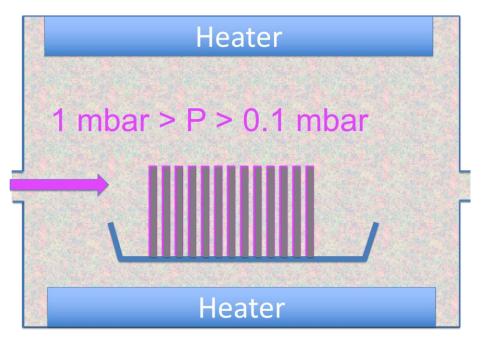

- At high temperature, growth is in the mass transport-limited regime → control of gas flow and pressure is crucial for obtaining uniform films
- At low temperature, growth is in the reaction-limited regime
 → control of local temperature is crucial for obtaining uniform films
- A low gas pressure is beneficial for good film uniformity and step
 coverage


Arrhenius plot of the film growth rate

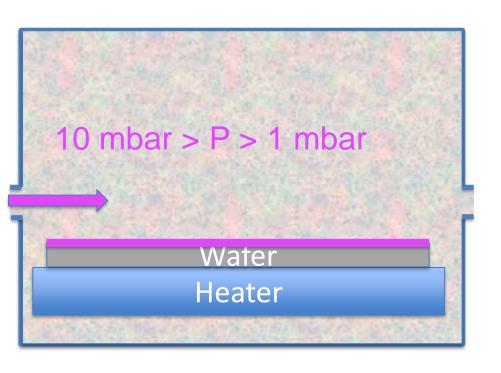
Arrhenius plot of the film growth rate



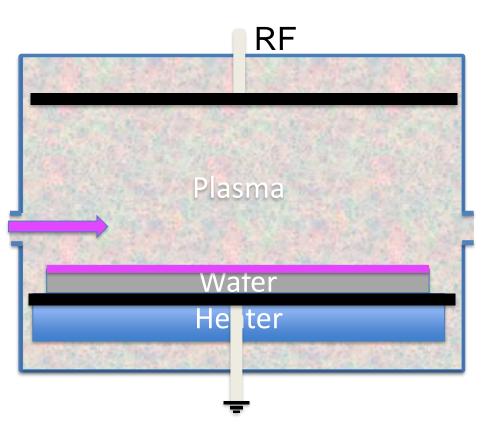
Atmospheric pressure CVD (APCVD)


- At high temperature, growth is in the mass transport-limited regime → gas flow control is very important
- Wafer placed horizontally in the gas flow → limits throughput
- Reaction may already start in the gas phase, resulting in unwanted precipitates on the wafer → nonuniformities or pinholes in deposited film

Low-pressure CVD (LPCVD)


- Low pressure results in increased gas diffusion
- No gas concentration gradient perpendicular to flow direction
- More uniform films
- 400 °C < T < 900 °C
- Growth in reaction-limited regime
- Precise temperature control is important
- Usually 10-100 × lower deposition rates compared to APCVD

Low-pressure CVD (LPCVD)


- Wafers can be stacked vertically in batches due to homogeneous gas conditions -> wafer throughput can be enhanced
- Downstream depletion of gases can be compensated by establishing a temperature gradient in the heater system

Plasma-enhanced CVD (PECVD)

Based on LPCVD-like configuration

Plasma-enhanced CVD (PECVD)

- Based on LPCVD-like configuration
- Radio Frequency (RF) power coupled into the gas, typically at 400 kHz or 13.56 MHz
- RF power induces plasma, i.e. a partially ionized gas, containing ions, electrons and excited gas molecules