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=PFL  Chemical Vapour Deposition or CVD

= Chemical reaction is involved

= Example for deposition of W
at high temperature (600 2C)

P F
W +3H, —> W +6HF
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Fig. 11. SEM cross section showing released but unsealed interdigitated
comb-drive fingers.
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Fig. 11. SEM cross section showing released but unsealed interdigitated De pOSition Of SiOZ by CVD

comb-drive fingers.
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CVD equipment

=PrL

Example of a

thermal CVD




=PrL

CVD equipment

= A batch of Si wafers is

positioned in a fused silica
holder

= After closing of entrance port,
the carrier gas enters the
deposition chamber under
very controlled flow and
temperature conditions

= The CVD thin film is grown on
all exposed surfaces of the
wafers
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Mass transfer from gas phase to substrate

e At equilibrium, the concentration at the surface (y=0) is maintained at a
uniform value pg,.-r < py=o and the gas transfer rate per unit surface can be

written in three dimensions as

Free stream

N[m_zs_l] = h[ms™"] (psurf - py=00)[m_3] * Coreentaten
with k the mass transfer coefficient o =
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PrL
Mass transfer from gas phase to substrate

e At equilibrium, the concentration at the surface (y=0) is maintained at a
uniform value pg,.-r < py=o and the gas transfer rate per unit surface can be

written in three dimensions as

Free stream

N[m_zs_l] — h[m 5_1] (psurf o py=00)[m_3] “ Concentaton
with h the mass transfer coefficient :

e If mass flux associated with species transfer is by diffusion, Fick’s law
applies at the surface
p 9P
—D 55| =0

\ — —D_ =0 h —
g (psurf R py=00)




=PFL Calculation of the film growth rate

e Diffusion flux of molecules through the boundary layer
Nl [m=*s7] = h[ms™"] (psurf - ,0y=oo)[7n_3
e Flux of reacted molecules consumed by the surface reaction

NZ[ 2571 = —ksurs [m S_l]psurf [m~3]
with kg, the surface reaction rate -

Free stream

boundary layer




=PFL Calculation of the film growth rate

e Diffusion flux of molecules through the boundary layer

Nl [m=2s™'] = h[m s™] (psurf - py=oo)[m_3
e Flux of reacted molecules consumed by the surface reaction

NZ[ 2571 = —ksurs [m S_l]psurf [m~3]
with kg, the surface reaction rate -
e In equilibrium, N = N; = N, , giving _ -

h+ kgurr)
Psurf = Py=oo n

Free stream

boundary layer
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e The film growth rate is then proportional to

_ ksurfh
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e The film growth rate is then proportional to

_ ksurfh

o [f h > kg,,r, Wwe have the surface
reaction-controlled case and

N = ksurf Py=00
o If h K kgyyrr, We have the diffusion-
controlled case and

N — hpy:OO
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_Eactiv Temperature decides whether
film growth is in the reaction-

limited or gas diffusion-limited
regime

* L) = === — -

F
F\//F

No plasma



=PrL

Eqctiv

tfilm(x) = Cgas(x) X Pgrowth>< e ksT

Eqctiv
kBT

ksurf ~ €

= At high temperature, growth is in the mass transport-limited
regime = control of gas flow and pressure is crucial for
obtaining uniform films

= At low temperature, growth is in the reaction-limited regime
—> control of local temperature is crucial for obtaining uniform
films

= A low gas pressure is beneficial for good film uniformity and step
_coverage



=PFL  Arrhenius plot of the film growth rate
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Atmospheric pressure CVD (APCVD)

e At high temperature, growth is in the
mass transport-limited regime -
gas flow control is very important

e Wafer placed horizontally in the gas
flow = limits throughput

e Reaction may already start in the
gas phase, resulting in unwanted
precipitates on the wafer - non-
uniformities or pinholes in deposited
film



Low-pressure CVD (LPCVD)

1 mbar>P > 0.1 mbar

—

|

e Low pressure results in increased
gas diffusion

e No gas concentration gradient
perpendicular to flow direction

e More uniform films

e 400°C<T<900°C

e Growth in reaction-limited regime

e Precise temperature control is
important

e Usually 10-100 X lower deposition
rates compared to APCVD



Low-pressure CVD (LPCVD)

1 mbar > P > 0.1 mbar

— I

e Wafers can be stacked vertically in
batches due to homogeneous gas
conditions =
wafer throughput can be enhanced

- @ Downstream depletion of gases can

be compensated by establishing a
temperature gradient in the heater
system



Plasma-enhanced CVD (PECVD)

e Based on LPCVD-like configuration

‘ 10 mbar > P > 1 mbar
— |

a8  \Water B
Heater




Plasma-enhanced CVD (PECVD)

RF
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e Based on LPCVD-like configuration

e Radio Frequency (RF) power
coupled into the gas, typically at 400
kHz or 13.56 MHz

e RF power induces plasma, i.e. a
partially ionized gas, containing ions,
electrons and excited gas molecules



